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Electron drift in specified fields has been examined in [1] and, as ap-
plied to a magnetron, in [2-4] with the averaging method. In [1,2],

a first- and in [3,4] in a second-order approximation of the small par-
ameter v ~ ME/Q*L was used, Here and below, E and H = (c¢/1)Q are
the field strengths, L is the characteristic dimension of the field heter-
ogeneity, 1 is the charge-mass ratio of an electron (1 > 0}, and c is
the velocity of light, An attempt to construct similar approximations
for a drifting electron beam with allowance for the space-charge field,
within the framework of the averaging method, involves considerable
mathematical difficulties. This paper describes an attempt to solve
the latter problem for a stationary monoenergetic beam that drifts
under the influence of a plane electric field with potential ¢(x,y)
across a strong homogeneous magnetic field Hy = H = const, Solutions
are constructed by the method of successive approximations, in powers
of the parameter € = h/L, where h is the Larmor electron radius for
narrow beams with a width on the order of 2h.

§1, Single-flow beam. Let the curve x = x.(f), y =
¥ () —the beam axis—be situated near the central tra-
jectory of a plane beam. The system of orthogonal co~
ordinates 8, I, in which I = const (let the right orth~
ogonal axes s = 0) is associated with the beam and is
determined by the curvature of the axis [5].

r =2z + Sylc: Y :\yc - S.Ic'; ‘zc, = dxt/dl,
de? + dy? = ds* + gdl* g = (1 — ks’
k= yc’xc” - xclyc”- (1;1)

1.1°. In the coordinates s, [, the equations of a
nonrelativistic monoenergetic beam with space-charge
density p(x,y) have the form
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In Egs. (1.2) we place the small parameter g4 at
those places where € = h/L appears as a result of
conversion to the dimensionless values
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We should add to Egs. (1.2) the obvious condition of
constancy of the total current J, of a free beam,
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1.2°. The solution of system {1.2), for a narrow beam q £ 1 of
small curvature ® < 1, can be sought as a series in powers of &, After
simple computations with accuracy to &%, we obtain the following
(dimensionless) result:
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Here, Y(A)—an arbitrary function—is related to the beam boundaries
by condition (1.4). If we take as the axis the central trajectory q4 =
= —q_ =h, condition (1.4}, in view of (1.5), takes the form

o e (g BB - 2v%b) + et (/g yb + 2¢%) +
+ 8 (292 yb — 3/, y7b%) = Y/, i, = const . (1.6
Results (1.5) overlaps in many ways with the results of [6] and,
generally speaking, could have been obtained by expansion of the
solution in powers of s, which was examined in [6], However, the

remaining results of this paper require a more general approach, If
we represent the external harmonic field ¢, near the beam as
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in view of (1.5), when the axis q, =2". is centrally positioned, it is
easy to obtain the relations

2V, £ 2B, b — (y £ b) + ex (B L6 T b — 30" F 29%) +
Feme (Y B o b0 — S/t T 4pb — 3y%2) —

— (V' kY BY L Py — vV ), (L

B, =k —ex(dB.b— 0 T3Iyo—v) —
— &2 (B b2 T 5/,0% — 690 T 3v%) +
+ 2 (2B Vb £ — Y v 0 Ty V), (1.8)

which result in the expression for the field ¢, in the inverse problem,
when the axis is given, If, for example, we consider a beam in a
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narrow channel with specified wall potentials (direct problem), then
(1.7) leads to a first=order differential equation (in zeroth approxima-
tion) for the axis.

1.8°. If expansion of the metric function g in g, is
abandoned, the solution of (1.2) can be sought as series
in powers of eX. With accuracy to &!, it follows from
(1.2) that
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Here, I' is an arbitrary function of /; the beam
axis was taken for convenience at the lower boundary
s_ = 0 (see Fig. 1), the derivatives with respect to ]
are taken at fixed s; the zero subscriptindicates zeroth

approximation in &%;
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As one would expect, expressions (1.10) coincide
with the exact solution for a cylindrical one-dimen-
gional (r) beam if I" = const, k = const, and g = e,
Thus, the old formulas have new contents here: I' and
k can be any functions of [ and are related to the beam
current J, = const and width s, = a(l) by a condition

that follows from (1.4) and (1.10):
EG=Tl—z+Y, 2+ 2+ —
— Yy =1, T2 —In I+ T}

by = k@2mnJ ) TQ; 2 =T (1 — ko)™ (1.11)
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The external field ¢, near the beam can, using the
Laplace equation, be represented with accuracy to &
as

I

The conditions of field continuity give at the lower

boundary s = 0

Snity_ = QX' — 1), Sui*B_ = @(*—1).  (L.13)

Hence follows the equation for the lower houndary

Sukte = (1 -+ 8npQ Ayh —1].  (1.14)
which is actually the equation of the electron trajec-
tory, where ¢ = ¢. is the potential and A = kB_ is the
field-strength component that is normal to the tra-
jectory. At the upper boundary we have

B

. = BMkTQ)B, —B) =z—",—T + T
V, = (8 n/T), — ) =

=2+ Y, —T—4T + (z—1,) In T/z. (1.15)

Figures 1-3 show graphs of k,, By, and Vx as
functions of ka. From these graphs, along the lower
boundary of the beam, we can determine the field near
the beam and the position of the electrodes S, (7) with
potentials ¥,

kS:t = 1 - eXP [(’lpi — Ti)/Z Bi]

thereby solving the inverse problem for a narrow band
containing a narrow beam.
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1.4°, Extension of (1.2) to the relativistic case gives equations for
a single-flow relativistic beam with velocity c(v/B):
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With aceuracy to 2, this system can be written as
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P =g —l=g =14 4%
vy _dA
A= =; AA=—~; o*=lng. (1.19
¢cVg' & Tds? ¢ )

The solution follows:

4nn (ko)™ pg = B* + 242,
y+in Ve=1/BF (arctg 4, VBE—1/8), (1.20)

where F is an elliptic integral of the first kind; T and B > 1 are arbi-

wary functions of , which are related to the beam width 2a(S; =+ a)
and the current Te by a condition that follows from (1.4), (1.16), and
(1.17):
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Integral (1.21) is not expressed in elementary functions. If we ex-
pand g from (1.20) and (1.21) in powers of s, with the same accuracy
we obtain

4 =shQ+ Yseup k2 chQ, B =c(ch Q4 Y, euu ks sh Q)
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The magnetic field H inside the beam is inhomogeneous. Outside
of the beam, the field is homogeneous and H, = Hs = za).

§2. Double-Flow Beam. Let us use the following
representation of a two-valued velocity vy V) and
density field Py P

Vo =T+ yw; vy =T — yw;
20 =90+ 8 20 =p — 8. (2.1)

In this representation, the electron hydrodynamic
equations for a nonrelativistic stationary monoener-
getic beam with an irrotational field of generalized
momentum have the form

Vul' =0; (Vu)? = 2n0; 240 = g — I?;  (2,2)
V() + V(Syw) = 0; V() + V(oVw) = 0; (2.3)
V2@ = 4mp; I,10x — 0l /0y = Q3 Q =njc H. (2.4)

By adding and subtracting Egs. (2.2) and (2.3), it is
easy to see, in view of (2.1), that (2.2) are equivalent
to the energy integrals and (2.3) are equivalent to the
continuity equations for the first Yty P and second
V() P subflows that form the beam in question. We
isolate the currents

I =o' +8Vw, J. = + Y, (6T + pVw),

where J is the current density of the beam and J,

the density of the so-called rotary current. It is ap-
parent from Eqs. (2.2) that velocity Aw {oscillatory),
by which the subflows are distinguished, is orthogonal
to the total (downwash) velocity I for hoth subflows
and vanishes (Vw = 0) at the surfaces & = 0. The sur-
face @ = 0, as the boundary of a two-velocity motion,
is the boundary of the beam in question, * and we may
write the conditions

(8) wlo=o = const and (b) IVD|,_, = 0, (2.5)

where (a) is equivalent to Vw = & = 0 and (b) asserts
that the beam current does not intersect the beam

boundaries** in the absence of sources at the boundaries.
Conditions (2.5) are necessarv for the method of suc-
cessive approximations.

2.1°. Let, in coordinates s, ! (which are associated
withthe beam), the axis s = 0 be situated near the
center of the beam; s, () >0 and s. () < 0 explicitly ex-
press the unknown beam houndaries =0, Taking (1.1)
into account, Eqgs. (2.2)-(2.4) are written in coordinates

*A case in which several surfaces ¢ =0 are formed
in the beam is possible. For simplicity, we consider
the case of one wave ¢ = 0 within the beam.

**The latter is valid, generally speaking, if (v®)? =
® =0. In the opposite case (V®?% = & =0, which is
possible with a full space charge, the current can inter-
sect the boundary & = 0.
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Here, T'g and I'; are covariant components of the
vector T in the s, [ system. In the continuity equa-
tions, integration is with respect to s, so that1 and
% are arbitrary functions of [. In (2.6)—(2.10), the
parameter &4 is placed where ¢ = h/L appears as a
result of conversion to dimensionless values (1.3) and

T T w
= S« :_l_‘ 'ﬁ‘E e
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w1 0w 1 211
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Conditions (2.5) can be written in the s, [ system as

Dis=35)=0 Os=5)=0, ws=s)=0,

w(s = s,) = 1/,mQA%, (2.12)
and
o
[(OF +0 Bs) s T
1 dwy 00 . 2.13
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In view of (2.8) and the identities

[afl) ds, M

o tar W]hsi =0 2-14)

conditions follow from (2.13) that determine X and I:

s
T=05 | (oi+2,%8-57) 1‘2_1 _l=2 (215
S
where J, is the total beam current
2.2°, W1’ch accuracy to €2, we can rewrite (2.6)—
{(2.10), (2.12), and (2.15) in dimensionless variables
(1.3) and (2.11) as

202 = ul? + (v + @ + ex(2y%¢ + 3y + %) ; (2.16)
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Here, y =v(l) and o = a(l). The substitution of
variables
(g, M) — (M)

andt =qg=0 (2.20)

(dg/dv), = us,

reduce Egs. (2.16) and (2.18) to one:
dglde® + q + v + ex(y® + 3 yq + °y ) = dU/dg;,
dUldg = av + v + ex(atg + vg + E(0) + ¥ - (2.21)

The solution of (2.21) can be represented as
g = ot + Ps; — exz; u, = a + Pe; — exn(dz/dv);

z= — 81— co) + e — 1 F My 1?) +

+ My afrlse —1e) + 1y B —ea)® + (2.22)

+ 2 yo(t — s) + Blss — ), p = B)-

Here and below, we shall use the symbols
s. = sin 1, ¢; = cos T, [ = tg T,
& =sin 0, and ¢y = cos O

If the axial line is made "symmetric" with respect
toT,

qr=40=q,; 0=0() (—o<v<®. (223

The imposition of conditions (2.20) gives for o, 8, v,
£, and 6, in the zeroth approximation,

q.°= £ bo, Bocez—do, b = ad + Bose
i

TR .

in first approximation

o == oty + (Yagnie) %1
B =By + (Maenic) Br s
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By (20co -+ B/co — 3s9) =
= (2/8) (—3/40 + 35 — 20ca -
- 3/yto — B%q-t 3/u8ts> —0/ca) »

oy = — Bieo -+ (1/B)X

X [2(1 —co — O2)1,



Oy, = — Yy (icag? @ + v,
v=all— Ea (0 —s) —
— 1,05 —5, 8+ s+
51y ty + Uy 0% — tolcal,

Esp == atp® (*/20 — sy — 1/20%0 —

— 3/l + to/Co) | (2.25)

and for positions of the boundaries

g, = bo -+ en(lyldy - AB),
—q_ = by + en(ty iby — AD),

by = a0 +‘ﬁ139 -
—(/8) [2 (8 —s5) — ta 101

Ab = ag? [Ea® (1 — ) —
R Y, Y, Oty + ey —

— Yy

Figures 4 and 5 give graphs of the coefficients
(2.24) —(2.26) as functions of the parameter 8, which
varies in the range 1/2 7 = 6 = 7, since by convention
the beam is described by one wave @.

It is easy to see that 20/Q is the oscillation time of
an electron between the beam boundaries, so that 7Q/8
is the angular oscillation frequency. This value varies

from © (zero charge) to 1/2 © (full space charge). The

space charge changes the energy of transverse mo-
tion (o + 50)292h2 and the radius of the electron orbit
bgh. The latter value varies from h (zerc charge) to
(r/V6)h ~ 1 (3h full charge). The space-charge den-

BU
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e
>€< &y
/
/100,68
g ob 0.8 12 [
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sity varies in inverse proportion to the field strength
on the axis A, ~ v and drops as the strength of the
external field near the beam increases. The appear-
ance of singularities in v, &, and Ab at 8 = 7 is due,
generally speaking, to improper choice of the axis
position, * In fact, the singularity in v; and £ near 9 =
= 7 in the formulas for g, ug, etc., is smoothed by
the factors with which vy and { enter these formulas.
The singularity of Ab, as can be seen from (2.26),
causes the selected (symmetric relative to 7) axis to
deviate rapidly from the center of the beam when 6 —
— 7. The applicability of formulas (2.23)-(2.26) is
thereby limited. The calculations for a symmetric
position of the axis q, = * b with respect to s are not
complicated, but the resulting formulas are consider—
ably more cumbersome than (2,25) and (2.26).

Joining the internal field U to the external V_ +B_q+
... in zeroth approximation gives

Bo, =y + a,8; 2V = o2 4 b T 2 g0y, (2.27)

These relations are shown in Fig. 6 for various
beam currents i,. Figure 4 shows graphs of the di-
mensionless potentials U and internal-field strength
A at the beam boundaries (+, ~) and at the center (c),
in zeroth approximation.

Up = (by = v0)% A = vo L ab;

U, = '}702 + 602; Ac = Yo, (2,28)

2.3°, The second approximation ine is already a function of the
gradients along the longitudinal coordinate I = AL, This approxima-
tion has such terms as

Vo= — (1" 1o) ¥/ u s
w0 = (@' 4 3By T A 2gBg s + Bt (25, — 71e.)
P= SVSD dg =

= — (052 4 BoB") [¥/aeT? 4 HatgT® - By (o — Te)] +

*The singularity of o; and 3yat the point 9 = 7/2 is
not substantial, since oy and B, participate in the for-
mulas as a sum, which smooths this singularity.
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Here, as before, the zero subscript denotes zeroth approximation.
If, for simplicity, we take a beam without curvature (k = 0), for the
second approximation we obtain

6%q/on? -+ v g + & [(9P/0N)q +
+ (%o + g0) Vs* + V® 0V */ 8g) = oU/dg;
Ulog = at+ y — & [fnydg + [ (PUY/AAg — § (1),
Q-0

a
neV? = — Vgls, — Fn 3 (%VIO +
. &

u? g0
! , 2
ul ) 9% e
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2.4°, Relativistic extension of (2.6)—(2.10) results
only in a change in the expressions for ®, H, and Q:
D = B? — T2 — g2 —¢?; B =c+ (n/c)y;

dH/ds = (4ni/cV 8) [oT; + 2,28 (dw/dl)];
Q= (n/c) H. (2.29)

Instead of (2.10), we obtain Eg. (1.17) for B. The re-
maining equations and conditions have the same form.
In zeroth approximation we have

2 AN
AeB 1% A e g T2 (2.30)

3
cus

This system was studied in [7], but conditions (2.12)
and (2.15) were not imposed there. Using the symbols
of {7], they can be written as

As = 4 2 [ (s — D)) "F (9, n)—
,m

- (\Ps—‘ 1131)‘/2E (Cp, n)]cpm H

40— 90" () F o —
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¢
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Here, F and E are elliptic integrals of the first
and second kind; Q4 h, and J; are constants; Ax, Sy
v, dy and e, arefunctionsofZ; and ¢ < §y < ggare roots
of the equation

Y+ —(1/5,) % + ¢, = 0; where ;<0

A=Y — ) (G — ) (bs—P) -

The solution is represented as B = cvl+ #* ch V;
Iy =c'/l+¢* shv.

As earlier, the given zeroth approximation differs
from the exact solution of the corresponding one-di-
mensional problem in that some of the constants in
the latter are interpreted as functions of [, which are
related by expressions that follow from (2,12} and
(2.15).

§3. Beam in specified field. Let a beam drift in a
given field with a characteristic inhomogeneity di-
mension L, so that near the beam axis the field can be
represented by a series in s.

3.1°, For a harmonic field we can write

@ =P + As+/, 8,kds® — 1/, 2,305 +-¢"'5%);

Q=1,(4" — 2k 4). (3.1)



where ¥(]) is the potential, A(l) is the normal com-
ponent of the field strength on the axis, and #' = dy/dl.
Limiting the accuracy to €, it is not difficult to
obtain, taking condition (2.12) into account, the fol~
lowing solution of Eqs. (2.6) and (2.7) for a symmetric
position of the axis s, = za:

200 = ul(l + e, Fy -+ e Fy);
Uy = Ul + Yy e F + Yy e, HF, — Yy F)I;
ug = dwlds, u; = dwldl; u, = QY a*—s*;
QF, = k(sQ? + 3TQ — q A);
Q*F, = n(Qs + §'") + ¥, Q@ + 5% +
LRSIQ - 3 kT2, (3.2)
onp = I? + Q%? + e jea? (3TQ — 14) +
g2l a® + /K%t + 3(kal)*];
M A = QI + e,k(Q + 2I7) +
g.? MQa® + 4 Ka® QL) ; (3.3)
A{QF + Y, e k(30Q — nd) +
Yy e’ 4 3/, (kaQ)* 43 KI?—

1k (3 TQ — nA)]} = h2Q2. (3.4)

Relations (3.3) and (3.4) can be represented as

ay = ha FOQ = nAO;

M, = (V/Q)2A + Q22 (3.5)
4 = — Ygkgh (Do/Q)s oy = (T/Q) (A, — ko To);
ATQ = 2n Ay — kofh? QF + T2, (3.6)
4y = — Y, hkgn Ay + kDo +

Yy by — ¥/ ke?Te?) Q72
20,0 = 2nd, — A k(T /@
By (l2Q2 + To?) + 4ko™To?/Q —

— B Qp— kK Ty Q..

a = ay + ega + e,2a,;

I'=Ty + ey + e, Ty, . 3.M

Tha half-width of the beam (radius of electron or-
bit) varies in first approximation as the curvature of
the axis and the field strength.* But the axis must be
found from the equation ¥(A,k) = @s So that Ay, Ay,
ki, and k; are corrections to ky and Ay,

The latter are determined by the position of the
axis y(x) in zeroth approximation,

2np = (/Q)242 + Q2h2;

A = [Qudy/de — @, [1 + (dy/dz)?1™2 (3.9)

If we add the constant Q*h? to the potential ¢ in the
equation for the electron trajectory (1.14) and expand
the right side in powers of g, ~k, we obtain

Ingp = Q% + (n/Q)2 A* (12, k2™ 4 4 ..)

¢, = do/dz. (3.9)
which coincides in first approximation with the equa-
tion for the beam axis which follows from (3.5) and
(3.6). With accuracy to &, therefore, the beam axis
coincides with a properly produced electron trajec-
tory.

For the velocity Iy and density Eqgs. (2.7)-(2.9)
give
T = Qs+ y—Y, 6, sy Ty ~ e,
§ = 1'/Q;
(A — e, ks) pu, = I -+, e 27 {a* — s%). {3.10)

In view of (3.2) and {3.10), condition (2.15) yields
ol {TQ? + Y6, k(Q%a? — 302Q + nAT) —
— 8, T (kaQ)? + Ygnp” +
LYy a(Q/A) Q1 4 Ve g2 w I gt = JQ0,

Hence, and from (3.5)—(3.7) and (3.10), it follows,
with accuracy to €%, that

o= JQ 14 ek (Mos £ MAQ?) |
¢ mAVE - ’

o,
—f (e,inaQ™) . (3.11)

It is appreent that a drift due to centrifugal force
with velocity ~ k(nA)? Q73 is added to the main drift,
which has velocity (n/Q)A. The obtained velocity and
density distributions are functions of the parameter 7,
which can vary over a finite range, according to the
geometry of the emitter, so that the full beam has a
multivalued velocity field and is represented as the
aggregate of the double-flow beams considered above.
The latter are conveniently called tubes of flow, A
tube of flow is the set of trajectories on the interval
dh. This set, generally speaking, does not completely
fill the volume of the tube. The density p, therefore,
can be interpreted as the density of the charge, which
spread from the true trajectc~ies over the possible
adjacent trajectories in the tube to a continuous dis-
tribution.

8.2°, It is easy to show that in zeroth approximation, according
10 (3.8), the axis oscillates as a quasi-cycloid between the two dis-
criminant curves

e = Q%2
mp = Q2+ M/QP (% + 0D ; Ox = 69 / oz (3.12)

These curves, bounding, generally speaking, a very narrow band

{41, intersect and branch at the singular point of the field ¢y = Py =

=0, Therefore, the beam axis also undergoes branching at this point,
i.e., at the singular points ¢y = @y =0, the tubes of flow branch,

*The orbit expands when the centrifugal force and
electric field act on the electron in one direction;

otherwise, it contracts.
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Moreover, as is easy to see from (1.8), the equation of the axis of a
dense beam in zeroth approximation coincides in form with (3.8).
Therefore, splitting of a dense beam is possible at the singular point

‘57)( =g =0,
3.3, For a weak field

=9+t esd D+ efBN+ ele() S+
similar calculations give
D =Qs+ e (T —1; Q k) + £R;
==Yy QF (a2 — £

s = ug [1 + Yy e ks + Yy 82 (Fa — Y, k255 +
+ e 84?5 (Fy — 1y kFy + Hs BS)]5

F2* = —B + 5/, k2Q2 (a® + &) + 3k I'Q;

u,=Q Va —;

(3.13)

FQ2 = — 2nc + 3/,13Q2 (a? -+ &%) + 4BTQ — 2RQ (a2 — ) 5

u = =Yy ey Y5 K (a — ) -
4 Uy . [20BQ™ — 5, ki’ a? — (3/Q) (KT)’]s +
A Yy ey ks (0P — 259} 5
Iy =1e, (Yg & (a2 — &) [Qs+ e, (I + 2 kQs2) +

+ Y, e, KK Qs (a2 — 28] +
+ 1Y, £, Qs [MBQ™ — 3, ki'a® — (3/Q) (I)]).

For the parameters of the tube of flowa, I', and ¥ we obtain

a = ag+ efay; =Ty ey, p =y + e, ;
gy = h;iToQ = ndg — Yp keQW2; 2mthy = Q25
@y = /g MAQ2 (2B — 3kod o)
e = (MAJQ)? + Yy B2 (koo — 2B) 5
2QT; = 204, — Q22 + 2ncoh? — 2kg(MAo/Q)? —
— Yy kg B2 (kydg -+ 2By) -

For definiteness, let field ¢ be harmonic, Then

9B = kA — ' 6c= 2624 — 2’ — B — A"

From (2.8), (2.9), (8.14), and condition (2.15) we obtain, for the

density,

J Q7
1= (422

(3.14)

(3.15)

(3.16)

(8.17

o)

1482
P~ —¢ ks) A4,

Va—g +

4 -8y

(3.18)

If it is assumed that ¢ is a traveling-wave field in a frame of
reference that moves uniformly with the wave, then (3.,14)~(3.18) are
applicable to the problem that was solved in [3] by the averaging me-
thod. From (3.16) and (3.17) follows a result (for example, for the
axis position) that agrees in second approximation with the line of or-
bit centers that was obtained in [3],

2p = e (M/Q)? (V)2 + Q2h2,

Similar calculations for a beam in a frame of reference that ro-
tates uniformly with the wave give, for the axis position, formula
{23) of [4].

Appendix. If, as is usually done [3,4], it is assumed that {(in a
frame of reference which rotates with the rotating wave of the funda~
mental field harmonic for a generating magnetron at angular velocity
w = const) the problem of calculation of an electron process in the
magnetron may be formulated as a stationary problem, the described
method may be used to calculate the electron “spokes® of the mag-
netron. These spokes, as is generally recognized, are relatively nar-
row beams that drift in the rotating system from the cathode (k) to the
anode (a) (see Fig. 7).
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The following preliminary estimate of the volt-ampere character-
istic of a magnetron operating under full space-charge limitation was
verified. Only the considerations of dense-beam branching discussed
in 3.2° were used.

Since the high-frequency field E decreases rapidly from the anode
to the cathode [2-4], the field in the near-cathode region (at the
"hub”); ignoring perturbation from the spokes whose charge from the
cathode ~ 1/E rapidly decreases can be roughly represented as the
field of a one-dimensional (r) cylindrical single-flow beam (hub). The
density of this beam p, the space-charge field ¢, and the azimuthal
electron velocity vg in a rotating frame of reference have the form

o 4
B O T B
P= B ri) 0 AR = vy — QR Q=0
vo = Yo Qu (r* — r?); B = w0/ % =1— 28.

~ The singular point of the field is obviously found near the liner =

(OQ/9r),—p, = 0, 7o = s (AL

A spoke with current 2L; /N branches off on this line from the near-
cathode beam:

1 /1t 1 x 2
=zo—s?{“\;—”—7+i") =gty z}'
= (’rk‘)z- P A (4.2)
=A\r, /)’ = 16ay

Here, N/2 is the number of spokes, I, the anode current, and he
the height of the working part of the cathode. A well-known relation
in (8] Links the upper effective boundary of the near-cathode beam r,
with the constant anode-cathode potential difference Ug:

U 1—z

a

108* m U—et (4 2) 2+ lng)],

2p 2
Ty 5Q%r, 2

(A 3)
* "

In conjunction with (A.2), it gives the desired characteristic I (U
These relations are shown graphically in Fig. 7. The volt-ampere

characteristics of ten types of magnetrons described in (8] were cal-
culated by (A.2) and (A.3), Comparison with the experimental char-
acteristics in [8] showed agreement within 20~5%. For four types
(4i50, 3j31, 22-x, and 38-cavity) the voltage deviations were within
10-59, In Fig, 8, the experimental characteristics are shown by solid
lines and the calculated by dashed lines,

I thank A, N, levievu for assistance in the computational and
graphical work, V. Ya. Kislov for a discussion of the results, and L.
A, Vainshtein for suggesting the problem examined in §3 and for
critical comments,
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